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Abstract--ln this paper, the natural frequencies and mode shapes of a Bernoulli-Euler beam with
a two degree-or-freedom spring-mass system are determined by using Laplace transform with
respect to the spatial variable. The deterministic and random vibration responses of the beam are
obtained by using model analysis. The various spring constants of the boundary conditions of the
beam are considered to model those special structures and machines, also different parameters of
the spring-mass system are taken into consideration [,;) study the fundamental natural frequencies
of the beam. It should be emphasized that the proposed analysis is quite important for the design
of some components of the buildings or machine tools.C 1997 Elsevier Science Ltd.

l. INTRODUCTIOI\

Vibration problem of beams carrying elastically-mounted concentrated masses have been
extensively investigated recently. They are usually used to design the components of build­
ings and some accessory components of machine structures and so on. The following
researchers have already made many contributions to the development of this field. Laura
et al. (1977) studied the dynamic behavior of the structure elements with elastically-mounted
concentrated masses. Lau (1981) obtained the fundamental frequency of a constrained
beam. Gurgoze (1984) performed the vibration analysis of the restrained beams and rods
with point masses. Ercoli and Laura (1987) did both the analytical and experimental
investigations on continuous beams carrying elastically-mounted masses. Jen and Magrab
(1993) obtained an exact solution for the natural frequencies and mode shapes for a
beam elastically constrained at its end and to which a rigid mass is elastically-mounted.
Meanwhile, Rossi et al. (1993) investigated the free vibrations of Timoshenko beams
carrying elastically-mounted concentrated masses. Kukla and Posiadala (1994) adopted
the Green function method to get the closed form expressions for the natural frequencies
of beams with elastically-mounted masses. Incidentally, Nicholson and Bergman (1986)
studied the vibration of damped plate-oscillator systems. Avalos et al. (1993) investigated
the free vibrations of a simply-supported plate carrying an elastically-mounted concentrated
mass, also, Avalos et al. (1994) performed the free vibration analysis for a circular plate.
Most of the above studies only dealt with the free vibrations, however, the present study
considered the free, deterministic and random vibrations and this is probably the first paper
where a forced vibration situation is treated on such systems.

In this study, we consider a beam with general boundary conditions, carrying a two
degree-of-freedom spring-mass system to model the machine tools or structures on the
beam. The free vibration solution is obtained by using the Laplace transform with respect
to the spatial variable. This technique has been shown in the following papers (Magrab,
1968; Hamada, 1981; Chang, 1993). The forced vibration is solved by the eigenfunction
expansion method which was also adopted and investigated by the researchers (Chang,
1993; Hull, 1994). The objective of the paper is to obtain the natural frequencies, mode
shapes and deterministic and random vibration response of the beam, furthermore, the
effect of changing the parameters of the system on the natural frequencies, mode shapes
and forced vibration response are also studied.
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2. GOVERNING EQUAnON OF MOTION

The partial differential equation of a uniform beam with an attached two degree-of­
freedom spring-mass system (Fig. I), according to Bernoulli-Euler theory, is the well­
known expression as follows

The equation of motion of the two degree-of-freedom spring-mass system can be
written as follows

(2)

(3)

where Yll = Yl +d\e,YI2 = Yl -d2e,Yb(X, t) is the displacement of the beam, Eis the modulus
of elasticity of the beam, p is the density of the beam, x is the spatial location, t is the time,
A is the cross-section area of the beam, F(x, t) is the applied force per unit length, 15 is the
Dirac delta function, and K 1 and K2 are spring constants. The boundary conditions of the
system are obtained by balancing the forces a.nd moments at both ends of the beam, which
can be expressed as follows

EIy~(O, t) == f3\y~(O., t)

where K, and K4 are spring constants.
The initial condition of the system are assumed as follows

}'b(x,O) = 0

J\(X,O) = o.

14)

(5)

(6)

(7)

(8)

(9)

When the two degree-of-freedom system is assumed to undergo harmonic oscillations,
that is, YI = -O}Yb e= -w2e, eqns (2) and (3) can be written as

It- ,I
Fig. I. Euler beam with a two degree-of-freedom system.
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[
Kl +K2 -m1w

2

-K2d2+K1d1

For simplicity, eqn (10) can also be written as

(11 )

where

(12)

(13)

(14)

Solving eqns (2) and (3) for YI and egives the following:

3. FREE VIBRAnON ANALYSIS

Substituting eqns (15) and (16) into the right-hand side of the governing eqn (1) yields
the following

where

(18)

(19)

For the undamped free vibration analysis, F(x, t), and damping coefficient, C, are
considered as zeroes and Yb = ¢(x) T(t) is assumed, then it is quite straightforward to derive
the following equation:

(20)

where

In order to solve eqn (20), we use the Laplace transform with respect to x, and solve
it for the transformed !p(s), then take its inverse to obtain the following

¢(x) = 0.5(cosh AX+ cos AX)¢(O) +0.5(sinh AX+ sin AX)q)'(O)!A

+0.5(cosh AX- cos h)¢"(O)!A2 + 0.5(sinh ),x- sin ).x)¢"'(O)!A 3

0.5 ~ . '). h' ). 1( ] ( .+ -.-, L. ¢(xi)KiBiV Ism I.(X-Xi -smA x-x;) u x-x,)
Ell." i~1

where u(x) denotes the unit step function in eqn (21).

(21 )
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In order to simplify the expressions of eqn (21), we assume the following:

R 1 (lx) = O.5(cosh AX+COS I.X)

R 2 (I.x) = O.5(sinh/.x+sinAx)

R3 (h) = O.5(cosh AX-C:OS AX)

R4 (h) = O.5(sinhAx-sin/.x).

Then eqn (21) can be written as

(22)

(23)

(24)

(25)

To solve for the four unknown quantities ¢(O), ¢'(O), ¢"(O), ¢"'(O), the general bound­
ary conditions are imposed, that is, we assume the beam is restrained at the ends x = 0 and
x = L by the linear and torsional springs. Substituting eqns (4) and (5) of boundary
conditions into eqn (26), we can get the following

I 2

+ -- L K¢(xJB,(})R 4 [A(X-X;)]u(x-x;)
ED.' i~l

(27)

where

(28)

(29)

(30)
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5'( '. IR('- f31 R ("
, 2 J.X) = 1 0 AX) + -- 1 I.x).

A' . EIA' -

Substituting eqn (27) into eqn (6) of the boundary conditions gives

Equation (32) can be simplified further as

387

(31 )

(32)

where

(34)

(35)

Similarly, substituting eqn (27) into eqn (7) of the boundary condition gives the
following

(36)

where

(37)

(38)

Solving eqn (33) and eqn (36) for ej and e2, we can get the following

(39)
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Setting x = XI and X = X 2 in eqn (27), we can obtain

2

¢C",) = D t L K¢(Xi)Bi(l.)[St().Xt)Tlxi-S2(1.Xt)T2xJ
i= I

(40)

(41 )

(42)

where

(45)

From eqns (41) and (42) we come up with two homogeneous equations as follows

(46)

(47)

where

The eigenvalues J. n and further the natural frequencies w" are determined by setting
the determinant of the coefficients in eqns (46) and (47) to be zero. Thus

(52)

From eqn (46), we can write



Vibration analysis of beams with a two degree-of-freedom spring-mass system 389

substituting it into eqn (27) and dividing by cfJ(~\2)' we can obtain the mode shapes of the
beam as follows

(53)

4. FORCED VIBRATION ANALYSIS

For the forced vibration of the damped system, expanding hex, t) in terms of the
undamped system eigenfunctions yields

x

Yh(X, t) = L q>,(X)qi(t)
i~ 1

(54)

where the cfJi(X) are the eigenfunctions of the beam, q;(t) are unknown and time dependent
generalized co-ordinates. Substituting the series solution into eqn (17) and assume the
following

'x

F(x, t) = pA L h(t)cfJ;(x)

where

1
h(t) =.~ JF(x, t)cfJ,(x) dx.

Ili

Then eqn (17) becomes

x·

L {ElcfJ"";(x)q;(t) + 2pACwicfJ;(X)i{i(t) + pAcfJi(X)ij;(t) - pAj;(t)cfJ,(x)
i=1

(55)

(56)

The following equation can be achieved by using the previous discussion of free vibration
analysis.

Substituting eqn (58) into eqn (57) gives
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x·

I [q,(t)+2(,w,q,(t)-w;q,(t)-};(t)]p AcP,(X) = o.
i= I

Multiply the above equation by cPi and integrate from 0 to L, we can obtain

x rL
'~l [q,(t) +2(,w,q,(t) +w;q,(t)-.[;(t)] Jo pAcP,cPjdx = O.

(59)

(60)

At this stage, it is necessary to derive the orthogonal property of the eigenfunctions
cP,(x) so that the time dependent generalized coordinates, qi(t), can be solved. To do so, the
governing equation and boundary conditions must be adopted and manipulated carefully
in the following.

(E/cP"r +K,cP = Olx~o

(E/cPT-K~cP = OI,.=L

(61 )

(62)

(63)

(64)

(65)

Equation (61) can be written for cP, and 41i, individually. Multiply the first equation by
cPi and the second equation by cPr then integrate from 0 to L we can acquire the following
equation

(66)

(67)

Subtracting eqn (66) from eqn (67), we can obtain

(68)

After some algebra, the right-hand side of eqn (68) turns out to be zero, so eqn (68)
can be written as follows

'L

(w;-w})1pAcP,cPjdx = O. (69)

Finally, the following orthogonality condition can be achieved when the natural
frequency Wi is different from Wi'

(70)

where fl, is the generalized mass and l5 u is the Kronecker delta function. Once we prove the
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existence of the orthogonal eigenfunction of the b'~am, we can obtain a differential equation
involving q, as follows by substituting eqn (70) into eqn (60)

"+2" 't; Qiqi ~iWiq,- w, qi = ~
Ili

(71 )

where Q,(t) is the generalized force and Ili is the generalized mass. They are defined as
follows

Q,(t) = rF(x, t)¢,(x) dx

rL

Il, = pA Jo # dx.

(72)

(73)

Solving the differential eqn (71) results in the following expression to the generalized
co-ordinates:

(t) -,",,) I [q(O) COS(Wd,l- qJ,) -t q(O). . .t]q. = e .;, - -- Sill WI
I Jl-(? Wdl (/

(74)

where

_ ;-I-Y2 _ -1 ~,
Wd' - WiV - ~i qJi - tan -----;.==.

"v/ 1-(7

Once the time dependent generalized coordinates q,(t) is evaluated, it is quite straight­
forward to calculate the forced vibrational response of the beam by using eqn (54).

5. RANDOM VIBRATION ANALYSIS

The theory of random vibration can be used to solve a very large class of engineering
problems since random excitation can be a satisfactory approximate model for a wide range
of real excitations. In this study, stationary random excitation and zero initial conditions
are assumed, and only the stationary random response is considered. From eqn (71) the
equation for the generalized displacement due to the external force can be written as

The generalized displacement in terms of the system transfer function is given as

1 f+GD
q,(t) = -- Hi(w) exp (iWt)Qi(W) dw

Il, - x

where Hi(w) is the frequency response function, which can be expressed as

(71 )

(75)

(76)

Since the random excitation F(x, t) is assumed to be stationary in time, then so is the
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generalized force Qj(t), and the cross-correlation function between the response at XI and
X2 can be written as

R'hxl'hx' (x I, X2, r) = E[Yb(X I, t)Yb(X2, t+ r)]

=E[n~1 ¢m(XI)qm(t) ntl¢n(X2)qn(t+r)] = "~lntl¢m(XI)¢n(X2)Rqmq,(r). (77)

Now, using eqns (75) and (77), one obtains

(78)

where SQmQJw) is the cross-spectral density function between Qm(t) and Q,,(t), which can
be obtained explicitly through double integration from SF"F,,(X I ,X2'W) which is the dis­
tributed cross-spectral density function between the random excitation F(x" t) and F(x2, t)
and H:(w) is the complex conjugate of H,(w). Therefore, if SF'IF"(X,, X b w) is given,
R,hX]Y,'" (XI' X2, r) can be computed easily from eqn (78). For XI = X2 = x, the response cross­
correlation function reduces to the autocorrelation function

Upon letting r = 0, the mean square value of the displacement at the point X is obtained
as

(80)

The cross-spectral density function SF"F
x
'(X"X2, w) of the distributed random exci­

tation is assumed to be So exp( -xlx l -x21) exp( - fJ( 2
), then the spectral density function

of the generalized force can be written as

(81 )

For simplicity, one can define

(82)

From eqn (80), the mean square value of the displacement can be written as

E[Yi(x)] =~ t t [¢m(X)¢n(X)Smn/J.lmlln]j+cc. Hm(w)H:(w) exp(-fJw2
) dw. (83)

2nm~1 ,,~I -x

6. NUMERICAL SOLUTIONS AND DISCUSSIONS

6.1. Free vibration analysis
We adopt the bisection method to solve: the frequency eqn (52), then we can obtain

the natural frequency W n based on the relation A,4 = pAo}/EI. Substituting w" into eqn (53),
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Table I. Natural frequencies of present study and exact solution

()) (rad S-I) ()) (rads- I ) ()) (rads l
) w (rads- I )

Present study Exact solution Present study Exact solution
Mode (simply-supported) (simply-supported) (clamped) (clamped)

I 449 449.1 1017.9 1018.1
2 1796.02 1796.5 2805.9 2806.4
3 4042 4042.1 5501.6 5501.7
4 7184.5 7185.9 9093.3 9094.7
5 11,226.8 11,228.1 13.583.8 13.585.9

393

we can get the numerical solution of the beam mode shapes. In the present study, we assume
the material properties and dimension sizes of the beam and the spring constants of the
spring-mass system as follows:

Hb = O.Sm, Ih = flWbH;, L I = 2m, HI = O.Sm, WI = 0.3m,

II = flm l (LT +HT), d l = d2 = 0.6m, Xl = 104m, X2 = 2.6m

K I = K 2 = 1 x 10 ION m - I , C = 0.05.

First of all, we must check the accuracy of the proposed method before we start
analyzing the other special cases or general case. We compare the results of the special cases
of the present study with m l = 0.1 kg with the exact solution with ml = O. Then the results
of comparisons are presented in Table I as follows

We can accept the accuracy of the numerical results of the present study because they
are very close to the exact solution, therefore, we use the same numerical method to analyze
some different cases in the following.

6.1.1. Special case.
(i) The beam is assumed as simply-supported at both ends. Theoretically speaking,

K 3 ~ 00, K 4 ~ 00 and /31 = /32 = a must be adopted in this particular case, however, since
we are working on the numerical solution, let us assume K 3 = K4 = I X 1020 N m- I and
/31 = /32 = I X 10- 10 N m-I, ml = 200 kg. Then the numerical results are calculated and
presented in Table 2 and Fig. 2 separately.

(ii) The beam is assumed as clamped at both ends. In order to obtain the numerical
solutions in this case, we assume K3 = K4 = I X 1020 N m- I

, /31 = /32 = I X 1020 N m- I
, and

the other parameter values are the same as those in case (a). Then the numerical results are
calculated and presented in Table 3 and Fig. 3, separately.

6.1.2. General case.
(i) We assume K 3 = K4 = I X 10 10 N m- I

, /31 = /32 ,= I X 1010 N m- I and the other
parameter values are exactly the same as those in special case except m l is changed to 500
kg. The following numerical results are achieved and presented in Table 4 and Fig. 4 based
on the above parameter values

Table 2. First five natural frequencies of the simply­
supported beam

Mode ), ()) Irad S-I)

I 0.772781 434
2 1.549144 1747
3 2.354843 4037
4 3.048975 6768
5 3.642023 9657
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Fig. 2. First five mode shapes of the simply-supported beam.

!

4

Table 3. First five natural frequencies of the clamped
beam

Mode ). OJ (rads- I
)

1 1.1622224 983
2 1.9236416 2694
3 2.7482261 5499
4 3.4044699 8438
5 3.6967433 9949
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Fig. 3. First five mode shapes of the clamped beam.

2.0

l.5

10

Table 4. First five natural frequencies of the general
restrained beam

Mode A w (rads ')

I 1.0628212 822
2 1.6554582 1995
3 2.1879959 3485
4 2.532351 4669
5 2.95278n 6348



396 T.-P. Chang and c.-Y. Chang

o

-1.25

-1500~·_---7-----2:-!-----7-----'~

Mode 1

-7.5

-10.0
0

, I

2 2 4

Mode 2 Mode 3

0

-I

-2

-3

-4

-5

o

25
2.0
1.5
1.0
0.5

o
-0.5
-1.0

-1.5
-2.0

-2.5O~---!-----±------~-----'~ -6
0

2

~~4 M~5

Fig. 4. First five mode shapes of the general restrained beam.
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-1.00

Table 5. First five natural frequencies of the general
restrained beam

Mode ). w (rad s I)

1 1.1053936 890
2 1.7095568 2128
3 2.19J2832 3496
4 2.6668199 5178
5 3.26543 7763

(ii) When we design a machine structure, we can always change some parameter to
alter and improve the character of the primary structure. Now we replace the mass of the
spring-mass system above the beam from 500 to 10 kg and we can get Table 5 and Fig. 5
as follows.

(iii) Theoretically, we can reduce the mass of the spring-mass system to increase the
fundamental natural frequency. Similarly, we can also reduce the mass moment of inertia
to increase the lowest natural frequency when the other parameter values are exactly the
same and we can change the spring constant of K, and K2 to get the different fundamental
natural frequency. After some calculations and computer drawing we can obtain Figs 6-8
in the following. It can be found that the fundamental natural frequency gets smaller as the
mass or mass moment of inertia of the spring-mass system gets larger.
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Fig. 5. First five mode shapes of th(: general restrained beam.
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Fig. 6. Fundamental natural frequency of the general restrained beam for various mass of spring­
mass system.

6.2_ Forced vibration analysis

6.2.1. Special case. It is quite understood that different boundary conditions will result
in different dynamic response. Suppose that the boundary conditions of the beam are
assumed as simply-supported and c1amped--clamped, respectively, and the beam is subjected



om) = 500 kg
* m) = 5000 kg

398 T-P. Chang and c.-Y. Chang

U 1000 -r--------.--------------,
~
-::>

~
8" 800
>,
u
c
<.>

'"0-
<.>

.;; 600
-;;
;;
:;;
c

-;; 400
C
<.>
E
"-::>c
'"~ 200 -rrrn-"TTT"TT"rTTTT"T"TT1rrT·rn-,..,..,rrrrrr"TTT"TT1rTTTTTTn"TT"m

o 2000 4000 6000 8000 10000

ml = 500 kg

Mass moment of inertia of spring-mass system II

Fig. 7. Fundamental natural frequency of the general restrained beam for various mass moment of
inertia of spring-mass system.
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Fig. 8. Fundamental natural frequency of the general restrained beam for various spring constant
K,.K,.

to a uniform distributed force F(x,t) = 5x 105 sinOt N m- I
, where 0 = 10rads- J

, after
some numerical calculations, the dynamic response of the beam are presented in Figs 9 and
10, separately.

6.2.2. General case.
(i) In this general case, F(x, t) = 107 x sin Ot N m -I, where 0 = 10 rad s- J is adopted.

The dynamic response of the general restrained beam is presented in Figs II and 12,
respectively, for different mass of spring-mass system. As it can be detected from the figures,
the dynamic response of the beam is greater if the mass of the spring-mass system is larger.

(ii) The dynamic response of the general restrained beam is presented in Figs 13 and
14, respectively, for F(x, t) = 107 x sin Ot N m - I (0 = 1000 rad s-I) and different driving
frequency. As can be seen from Fig. 13, the dynamic response of the beam is smaller if the
mass of the spring-mass system is larger. It is quite interesting to note that the result of
Fig. 13 is different from that of Fig. II, since now the driving frequency of the excitation
is closer to the fundamental natural frequency of the beam with the smaller mass of spring­
mass system. In Fig. 14, whenever the forcing frequency is close to one of the natural
frequencies, the dynamic response of the beam becomes larger, which is quite reasonablce.
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Fig. 9. Dynamic response of the mid point of the beam.
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Fig. II. Dynamic response of the mid point of the general restrained beam (Q = 10 rad s· I).

6.3. Random vibration analysis
Based on the proposed random vibration analysis described previously, the mean

square value of the displacement of the beam can be determined from eqn (83). In the
numerical computation, the cross-spectral density function SF

d
F" (x], X2, w) of the dis­

tributed random excitation is assumed to be Sol -lXlx\ - x21) exp( - f3( 2
) , where IX = 13 = I
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and So = 1 x lOll N m -2 s, and the calculated mean square value of the displacement of the
beam is shown in Fig. 15.

7. CONCLUSIONS

In this paper, the natural frequencies and mode shapes of a Bernoulli-Euler beam with
a two degree-of-freedom spring-mass system are determined by using Laplace transform
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Fig. 15. Mean square value of the displacement of the beam.

with respect to the spatial variable and the deterministic and random vibration responses
of the beam are obtained by using modal analysis. The various spring constants of the
boundary conditions of the beam are considered to model those special structures and
machines, also different parameters of the spring-mass system are taken into consideration
to study the fundamental natural frequencies of the beam. It should be emphasized that
the proposed analysis is quite important for the design of some components of the buildings
or machine tools.
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